Comparison of Efficacy and Safety Results in 103 Treatment-Naïve Acute Myeloid Leukemia (TN-AML) Patients Not Candidates For Intensive Chemotherapy Using 5-day and 10-day Regimens of Guadecitabine (SGI-110), a novel Hypomethylating Agent (HMA)

On Behalf of the SGI-110 Investigative Team

Hagop M. Kantarjian¹, Gail J. Roboz², Patricia L. Kropf³, Karen W. L. Yee⁴, Casey L. O’Connell⁵, Raoul Tibes⁶, Katherine J. Walsh⁷, Nikolai A. Podoltsev⁸, Elizabeth A. Griffiths⁹, Elias Jabbour¹, Guillermo Garcia Manero¹, David Rizzieri¹⁰, Wendy Stock¹¹, Michael R. Savona¹², Todd L. Rosenblat¹³, Jesus G. Berdeja¹⁴, Laksmi Wilson¹⁵, James N. Lowder¹⁵, Pietro Taverna¹⁵, Yong Hao¹⁵, Mohammad Azab¹⁵, Jean-Pierre J. Issa¹⁶

¹ MD Anderson Cancer Center, Houston, TX, ²Weill Cornell Medical College, New York, NY, ³Fox Chase Cancer Center, Philadelphia, PA, ⁴Princess Margaret Cancer Center, Toronto, Canada, ⁵USC Keck School of Medicine, University of Southern California, Los Angeles, CA, ⁶Mayo Clinic Arizona, Scottsdale, AZ, ⁷The Ohio State University, Columbus, OH, ⁸Yale University School of Medicine, New Haven, CT, ⁹Roswell Park Cancer Institute, Buffalo, NY, ¹⁰Duke University Medical Center, Raleigh, NC, ¹¹University of Chicago Medical Center, Chicago, IL, ¹²Vanderbilt University Medical Center, ¹³New York Presbyterian/Columbia University Medical Center, New York, NY, ¹⁴Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, ¹⁵Astex Pharmaceuticals Inc., Dublin, CA, ¹⁶Fels Institute, Temple University, Philadelphia, PA.
Guadecitabine (SGI-110) - Background

- Next generation hypomethylating agents
- Dinucleotide of decitabine and deoxyguanosine=protects it from deamination=prolongs *in vivo* exposure of decitabine
- Prolonged decitabine exposure may translate into better efficacy
Guadecitabine- Phase 1 Pharmacokinetics
Prolonged Exposure Time of Decitabine Compared to IV Decitabine

- Decitabine exposure window after SC SGI-110 increased (11-12 h) compared to decitabine 20 mg/m^2 1-hr IV infusion (3-4h, simulated)
- Decitabine C_{\text{max}} less than one third of IV decitabine
- 4-fold increase in half life over decitabine IV

Guadecitabine– American Society of Hematology 2015

Issa. Lancet Oncology 16:1099; 2015
Guadecitabine—Phase 1 Pharmacodynamics
Potent Dose-dependent LINE-1 DNA Demethylation

- LINE-1 demethylation increased with dose up to 60 mg/m² Daily x 5
- Maximum demethylation at 60 mg/m² Daily x 5 (BED)
Guadecitabine-Phase 2 Study in Rx-naïve AML

Major Eligibility
Elderly treatment naïve AML unfit for induction therapy

Randomization

Biologically Effective Dose
60 mg/m² daily x 5

Biologically Effective Dose
60 mg/m² 10-day regimen

10-day treatment continued for 2+ cycles, then daily x 5

Biologically Effective Dose
90 mg/m² daily x 5

Highest Well Tolerated Dose

Treatment continued until unacceptable toxicity, disease progression

IWG 2003 AML Response Criteria

• Primary Endpoint: Overall composite CR rate(CRc): CR + CRp + CRi
• Secondary Endpoints: LINE-1 demethylation, overall survival and safety

Data from randomized study previously presented (Yee et al EHA 2014) consolidated as the 5-Day regimen
Guadecitabine – American Society of Hematology 2015

Guadecitabine - 10-day Regimen

Minimum 6 cycles

1-4 Cycles

10-Day Cycle (28 days)

D1-5 D8-12

Continue Until Progression or Unacceptable Toxicity

5-Day Cycle (28 days)

SGI-110

D1-5

SGI-110 60 mg/m²/d SQ Days 1-5 and 8-12, Q28 days for 1-4 cycles, followed by Rx on Days 1-5 Q28 days for a total of at least 6 cycles
Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>5-day (n=51)</th>
<th>10-day (n=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, (range)</td>
<td>78 (62-92)</td>
<td>77 (66-92)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>30 (59)</td>
<td>34 (65)</td>
</tr>
<tr>
<td>F</td>
<td>21 (41)</td>
<td>18 (35)</td>
</tr>
<tr>
<td>ECOG PS, n(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>11 (22)</td>
<td>5 (10)</td>
</tr>
<tr>
<td>1</td>
<td>22 (43)</td>
<td>26 (50)</td>
</tr>
<tr>
<td>>2</td>
<td>18 (35)</td>
<td>21 (40)</td>
</tr>
<tr>
<td>Poor CG, n (%)</td>
<td>23 (45)</td>
<td>20 (38)</td>
</tr>
<tr>
<td>Secondary AML, n (%)</td>
<td>23 (45)</td>
<td>14 (27)</td>
</tr>
<tr>
<td>Median BM % blast (range)</td>
<td>40 (13-94)</td>
<td>49.5 (16-98)</td>
</tr>
<tr>
<td>Median WBC (10⁹/L) (range)</td>
<td>2.6 (0.7-50)</td>
<td>4.0 (0.5-87.7)</td>
</tr>
</tbody>
</table>

* 5-day data consolidated for 60 and 90 mg/m² doses

As of cutoff date of November 2, 2015
Guadecitabine - Phase 2 5-day and 10-day Regimens
LINE-1 Demethylation in Cycle 1

In Rx- naïve AML, 10-day schedule (Days 1-5 and 8-12) shows longer duration of LINE-1 demethylation compared to 5-day

Guadecitabine– American Society of Hematology 2015
Guadecitabine - Phase 2 5-day and 10-day Regimens Response

<table>
<thead>
<tr>
<th>Response Category<sup>1</sup></th>
<th>5-day (n=51)</th>
<th>10-day (n=52)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>19 (37)</td>
<td>16 (31)</td>
<td>0.54</td>
</tr>
<tr>
<td>CRi</td>
<td>7 (14)</td>
<td>4 (8)</td>
<td>0.36</td>
</tr>
<tr>
<td>CRp</td>
<td>3 (6)</td>
<td>5 (10)</td>
<td>0.72</td>
</tr>
<tr>
<td>Overall</td>
<td>29 (57)</td>
<td>25 (48)</td>
<td>0.43</td>
</tr>
</tbody>
</table>

¹International Working Group 2003 AML Response Criteria
Guadecitabine - Phase 2 Study 5-day and 10-day Survival by Regimen

Product-Limit Survival Estimates
With Number of Subjects at Risk

Median F/U (mo)
Daily x5 30.1
10-day 16.8

Median Survival (mo)
5-day 10.5
10-day 9.5

Log-rank P = 0.70
Guadecitabine - Phase 2 Study 5-day and 10-day Survival by Response

Product-Limit Survival Estimates
With Number of Subjects at Risk

Survival (Days)

Survival Probability

Median Survival (mo)
CR 19.1
CRp + CRi 15.8
Other 3.1

Log-Rank P < 0.0001
Guadecitabine - Phase 2 Study 5-day and 10-day Adverse Events Grade ≥ 3 in ≥ 10% 1

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>5-day (n=51) Grade ≥ 3 AEs %</th>
<th>10-day (n=52) 2 Grade ≥ 3 AEs %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrile Neutropenia</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>49</td>
<td>40</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>Anemia</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>Sepsis</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Cellulitis</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

1 Regardless of relationship to guadecitabine

2 No significant differences between the 2 groups
<table>
<thead>
<tr>
<th></th>
<th>5-day (n=51)</th>
<th>10-Day (^1) (n=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day n (%)</td>
<td>3 (5.9)</td>
<td>1 (1.9)</td>
</tr>
<tr>
<td>60-day n (%)</td>
<td>8 (15.7)</td>
<td>9 (17.3)</td>
</tr>
</tbody>
</table>

\(^1\) Differences not statistically significant between the 2 regimens
Guadecitabine (SGI-110) - Conclusions

• Next generation HMA with prolonged in vivo exposure to decitabine

• Potent demethylation with both 5-day and 10-day regimens at the 60 mg/m²/d dose.

• Both regimens well-tolerated

• Promising activity in poor prognosis elderly Rx-naive AML unfit for intensive chemoRx - No significant efficacy differences
 – 37% CR and 57% CRc with 5-day
 – 31% CR and 48% CRc with the 10-day

• Survival
 – Median survival similar ~ 10 m in poor prognosis unfit patients
 – CR > CRi > Others p < 0.0001

• AML: ASTRAL-1 Phase 3 Trial in Rx-Naïve AML unfit for intensive chemoRx using 5-Day regimen underway
Acknowledgements

Hagop Kantarjian, MD
Guillermo Garcia-Manero, MD
Farhad Ravandi, MD
Elias Jabbour, MD

Jean Pierre Issa, MD
Patricia Kropf, MD
Woonbok Chung, PhD

Raoul Tibes, MD, PhD

Michael Savona, MD

Gail Roboz, MD
Ellen Ritchie, MD

Karen Yee, MD

Department of Medicine
Duke University School of Medicine
David A. Rizzieri, MD

MammoPod
American Society of Hematology 2015

Guadecitabine–American Society of Hematology 2015

Hagop Kantarjian, MD
Guillermo Garcia-Manero, MD
Farhad Ravandi, MD
Elias Jabbour, MD

Jean Pierre Issa, MD
Patricia Kropf, MD
Woonbok Chung, PhD

Raoul Tibes, MD, PhD

Michael Savona, MD

Gail Roboz, MD
Ellen Ritchie, MD

Karen Yee, MD

Department of Medicine
Duke University School of Medicine
David A. Rizzieri, MD

MammoPod
American Society of Hematology 2015

Guadecitabine–American Society of Hematology 2015