Abst. No. 9059

Addition of HSP90 inhibitor onalespib to crizotinib prior to progression in patients with ALK-pos NSCLC; results of a randomized Phase 2 study

Jong-Seok Lee¹, Ji-Youn Han², Myung-Ju Ahn³, In-Jae Oh⁴, HyeRyun Kim⁵, Dae Ho Lee⁶, Erin Marie Bertino⁷, Santiago Viteri Ramirez⁸, Nathan A. Pennell⁹, Antoinette J. Wozniak¹⁰, Joan H. Schiller¹¹, Chester Lin¹², Harold N. Keer¹², Mohammad Azab¹², Benjamin Besse¹³, D. Ross Camidge¹⁴

1Seoul National University, Bundang Hospital, Seongnam, Korea; Samsung Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Samsung Medical Center, University of Ulsan College of Medicine, Seoul, Korea, The Republic of Korea; Samsung Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Samsung Medical Center, University of Ulsan College of Medicine, Seoul, South Korea, The Republic of Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Ollege of Medicine, Seoul, South Korea; Samsung Medical Center, University Republic of Korea; ⁷The Ohio State University Medical Center, Columbus, OH; ⁸Quirón-Dexeus University of Colorado, Aurora, CO, USA; ¹³Gustave Roussy Cancer Center, Villejuif, France; ¹⁴University of Colorado, Aurora, CO, USA

BACKGROUND

- Hsp90 is required for proper ALK function
- Onalespib (AT13387) is a second generation Hsp90 inhibitor Onalespib in ALK-driven pre-clinical models:

 - Displays potent antitumor activity
 - Delays the onset of resistance¹
- In the clinic, onalespib²
 - Has a safety profile consistent with the class
 - (diarrhea, mild transient visual changes) PK & PD results support weekly dosing
- Has antitumor activity (PR) at a dose of 220 mg/m² (D1,8,15 of 28 Day cycle)
- Crizotinib (CZT) has demonstrated clinical activity in ALK-pos NSCLC³
- AT13387-05 is a 3-part, Phase 1-2 study in ALK-pos NSCLC.
 - Part A (Phase 1 of the study demonstrated the safety of Onalespib/CZT in combination with some activity in progressing patients⁴
 - Results are presented for Part B of the study, randomization to combination of Onalespib added to CZT vs CZT alone prior to development of resistance (Fig 2)

STUDY DESIGN

Figure 2: AT13387-05 randomized study schema (Part B)

Study objectives

- Primary:
- To compare progression-free survival (PFS) between the administration of single-agent CZT and the combination of CZT + onalespib in subjects with NSCLC who will be treated with CZT or who were treated with CZT and have not progressed
- Secondary:
 - To assess the safety of onalespib in combination with CZT in subjects with NSCLC
 - To compare the OS between CZT and CZT + Onalespib
 - To compare ORR (CR + PR) between CZT and CZT + Onalespib for subjects with measurable disease at baseline
 - To assess ORR in CZT patients who crossover to CZT + Onalespib and have measurable disease at the time of crossover

Patient population

Major Inclusion Criteria:

- Patients with NSCLC (ALK rearranged or other change potentially sensitive to CZT, e.g. ROS)
- Treated with or scheduled to be treated with CZT prior to first potential dose of onalespib
- Adequate organ (cardiac, renal, hepatic) function & Performance Status (ECOG 0-2)
- Controlled brain metastases allowed

Major Exclusion Criteria:

Prior anticancer treatment with Hsp90 inhibitor

Figure 1: AT13387

- Known symptomatic brain metastases
- ≥ Grade 2 bilirubin or transaminases or visual disturbances due to CZT

Study methodology

Dosing Regimen:

 CZT at either 250 mg PO BID (or lower based on current tolerated dose) alone or in combination with onalespib at 220 mg/m² on Days 1, 8, 15 every 4

Study Assessments:

- AEs assessed at D1,8,15,22 for cycle 1
- Triplicate ECGs pre- and post-onalespib infusion
- Chemistry and Hematology prior to Days 1,8, and 15 PK: Blood samples at various time points D1 for
- onalespib and CZT
- Efficacy: Assessment of ORR and PFS by RECIST every 2 cycles

Study Endpoints:

Primary:

 The comparison of PFS between CZT alone and the combination of CZT + Onalespib

Secondary:

- The comparison of OS and between CZT alone and the combination of CZT + onalespib
- The comparison of AEs between CZT alone and the combination of CZT + onalespib
- The comparison of ORR (CR + PR) between CZT alone and CZT + onalespib for subjects with measurable disease at baseline
- The comparison of ORR (CR + PR) in CZT patients who cross over to CZT + onalespib for subjects with measurable disease at the time of crossover

Table 1: Patient characteristics and prior therapy

Characteristic		CZT (N=66)	CZT + Onalespib (N=67)	Total (N=133)
Age (years)	Median (range)	51.0 (20-80)	58.0 (29-85)	54.0 (20-85)
Gender	M/F (%F)	33/33 (50%)	23/44 (65.7%)	56/77 (57.9%)
ECOG	0 (%)	11 (16.7%)	25 (37.3%)	36 (27.1%)
	1 (%)	52 (78.8%)	39 (58.2%)	91 (68.4%)
	2 (%)	3 (4.5%)	3 (4.5%)	6 (4.5%)
Treatment		CZT (N=66)	CZT + Onalespib (N=67)	Total (N=-133)
Prior systemic chemotherapy	Y/N (%Y)	48/18 (72.7%)	46/21 (68.7%)	94/39 (70.7%)
Prior CZT	Y/N (%Y)	28/38 (42.4%)	25/42 (37.3%)	53/80 (39.8%)
Duration of prior CZT	0-2 months	5 (17.9%)	7 (28.0%)	12 (23.1%)
	> 2 – 4 months	12 (42.3%)	7 (28.0%)	19 (36.5%)
	> 4 months	11 (39.3%)	11 (44.0%)	22 (42.3%)
Response to CZT	CR	1 (3.6%)	1 (4.0%)	2 (3.8%)
	PR	13 (46.4%)	10 (40.0%)	23 (43.4%)
	SD	10 (35.7%)	8 (32.0%)	18 (34.0%)
	PD	0 (0%)	0 (0%)	0 (0%)
	NE	2 (7.1%)	3 (12.0%)	5 (9.4%)
	Unk	2 (7.1%)	3 (12.0%)	5 (9.4%)
Brain Metastases	Y/N (%Y)	33/33 (50.0%)	28/39 (41.8%)	61/72 (45.9%)

• CZT alone and CZT + Onalespib arms were reasonably balanced for most factors: (age, ECOG PS, Prior systemic chemotherapy, Prior CZT and duration)

SAFETY SUMMARIES

Table 2: AEs grade 3 and higher occurring in >5% of subjects, independent of relationship

Event	CZT alone		Onalespib + CZT			All Patients			
	G3	G4	Total	G3	G4	Total	G3	G4	Total
Diarrhoea	0	0	0	10	0	10	10	0	10
	(0.0%)	(0.0%)	(0.0%)	(14.9%)	(0.0%)	(14.9%)	(7.5%)	(0.0%)	(7.5%
Nausea	0	0	0	7	0	7	7	0	7
	(0.0%)	(0.0%)	(0.0%)	(10.4%)	(0.0%)	(10.4%)	(5.3%)	(0.0%)	(5.3%
Fatigue	1	0	1	7	0	7	8	0	8
	(1.5%)	(0.0%)	(1.5%)	(10.4%)	(0.0%)	(10.4%)	(6.0%)	(0.0%)	(6.0%
ALT increased	1	3	4	2	0	2	3	3	6
	(1.5%)	(4.5%)	(6.0%)	(3.0%)	(0.0%)	(3.0%)	(2.3%)	(2.3%)	(4.6%
AST increased	3	1	4	1	0	1	4	1	5
	(4.5%)	(1.5%)	(6.0%)	(1.5%)	(0.0%)	(1.5%)	(3.0%)	(<1.0%)	(3.8%
Blood CPK	3	1	4	0	0	0	3	1	4
increased	(4.5%)	(1.5%)	(6.0%)	(0.0%)	(0.0%)	(0.0%)	(2.3%)	(<1.0%)	(3.0%

Results

Treatment-emergent AEs grade 3 or higher, reported in more than 5.0% of subjects are presented in Table 2. Addition of onalespib to CZT did not appear to worsen the tolerability based on grade 3 or higher events though a higher percentage of combination treated subjects (60% vs. 36%) experienced grade 3 or higher events. Two subjects (3%) (both in combination arm) discontinued treatment due to AEs.

Table 3: All AEs occurring in >10% of subjects, independent of relationship

	CZT	Onalespib + CZT	Total
	(N=66)	(N=67)	(N=133)
Number (%) of Subjects Experiencing Any TEAEs	66 (100.0%)	67 (100.0%)	133 (100.0%)
Diarrhoea	34 (51.5%)	55 (82.1%)	89 (66.9%)
Nausea	35 (53.0%)	53 (79.1%)	88 (66.2%)
Vomiting	26 (39.4%)	44 (65.7%)	70 (52.6%)
Constipation	23 (34.8%)	27 (40.3%)	50 (37.6%)
Fatigue	15 (22.7%)	34 (50.7%)	49 (36.8%)
Oedema Peripheral	17 (25.8%)	23 (34.3%)	40 (30.1%)
Decreased Appetite	16 (24.2%)	23 (34.3%)	39 (29.3%)
Headache	17 (25.8%)	18 (26.9%)	35 (26.3%)
Cough	15 (22.7%)	17 (25.4%)	32 (24.1%)
Dysgeusia	11 (16.7%)	20 (29.9%)	31 (23.3%)
Dizziness	15 (22.7%)	16 (23.9%)	31 (23.3%)
Insomnia	8 (12.1%)	20 (29.9%)	28 (21.1%)
Alanine Aminotransferase Increased	13 (19.7%)	13 (19.4%)	26 (19.5%)
Photopsia	13 (19.7%)	12 (17.9%)	25 (18.8%)
Visual Impairment	12 (18.2%)	12 (17.9%)	24 (18.0%)
Dyspepsia	8 (12.1%)	14 (20.9%)	22 (16.5%)
Dyspnoea	9 (13.6%)	13 (19.4%)	22 (16.5%)
Rash	9 (13.6%)	13 (19.4%)	22 (16.5%)
Aspartate Aminotransferase Increased	11 (16.7%)	9 (13.4%)	20 (15.0%)
Productive Cough	9 (13.6%)	11 (16.4%)	20 (15.0%)
Pyrexia	9 (13.6%)	10 (14.9%)	19 (14.3%)
Abdominal Pain Upper	8 (12.1%)	11 (16.4%)	19 (14.3%)
Abdominal Pain	4 (6.1%)	14 (20.9%)	18 (13.5%)
Dry Mouth	3 (4.5%)	14 (20.9%)	17 (12.8%)
Anaemia	6 (9.1%)	11 (16.4%)	17 (12.8%)
Asthenia	6 (9.1%)	10 (14.9%)	16 (12.0%)
Electrocardiogram Qt Prolonged	5 (7.6%)	11 (16.4%)	16 (12.0%)
Myalgia	3 (4.5%)	12 (17.9%)	15 (11.3%)
Chills	7 (10.6%)	8 (11.9%)	15 (11.3%)
Urinary Tract Infection			

Treatment-Emergent AEs of any grade, reported in >10% of subjects, independent of relationship, are presented in Table 3. The safety profiles were generally consistent with those expected based on single agent data. Notably, a high percentage of subjects receiving onalespib experienced GI AEs (diarrhoea, nausea, vomiting, etc.), though these were generally grade 2 or lower and were self-limited or resolved with symptomatic treatment. Elevated hepatic transaminases and visual impairment which can be seen with CZT did not appear to be worsened by the addition of onalespib.

Table 4: Analysis of objective response rates

	CZT (N=65)	Onalespib + CZT (N=65)
ponse Category		
Complete Response (CR)	2 (3.1%)	0 (0.0%)
Partial Response (PR)	31 (47.7%)	38 (58.5%)
Stable Disease (SD)	24 (36.9%)	23 (35.4%)
Progressive Disease (PD)	6 (9.2%)	3 (4.6%)
Not Evaluable (NE)	2 (3.1%)	1 (1.5%)
Objective Response (ORR)	33 (50.8%)	38 (58.5%)

95% CIs of ORR for CZT alone and CZT + onalespib were 40-64.7 and 47.3-71.4, respectively. The p-value is 0.43 for comparing the two ORR rates

Figure 3: Analysis of progression-free survival

Data Extracted: 16MAY2016 Source: M:\AT-13387\05\Biostat\asco2016\devel\program\figures\f_pfsos.sas (25MAY2016:08:12), Output: f_15312_pfs_b

PFS analysis was based on 40 CZT events and 31 Combination events. **Median PFS estimates:**

- CZT alone 319 days (239-378) CZT + Onalespib 336 days (223- NE)
- P-value = 0.35
- HR = 0.78 (0.5-1.3)

Table 5. Analyses of PFS based on presence or absence of CNS mets

	CZT alone			CZT + onalespib		
	No. subjects	Events	Median PFS (95% CI)	No. subjects	Events	Median PFS (95% CI)
CNS Mets present	32	24	231 (111-308)	27	18	224 (212-424)
No CNS present	33	16	387 (320-470)	38	13	NE (223-NE)

CONCLUSIONS

- Onalespib can be combined with standard dose CZT (250 mg BID) with good tolerability
- More objective responses were seen in the combination (onalespib + CZT) arm, however the difference was not significant
- The response rate did not translate into an improvement in progression-free survival despite encouraging pre-clinical data and the lack of effect was independent of the presence or absence of CNS metastases
- The data for overall survival are premature to draw conclusions at present
- The data do not support use early use of onalespib in combination with CZT to delay the emergence of resistance

REFERENCES

- 1. Smyth T, Munck J, Rodriguez-Lopez A, McMenamin R, Thompson N, Azab M, Lyons J, Wallis NG. Combining the HSP90 inhibitor, AT13387, with crizotinib improves response in an ALK-positive model of NSCLC. IASLC 15th
- World Conference on Lung Cancer Sydney Australia 2013: Abstract 008.06. 2. Shapiro, GI, Kwak, E, Dezube BJ, Yule M, Ayrton J, Lyons J, and Mahadevan D. First-in-Human Phase 1 Dose Escalation Study of a Second-Generation Non-Ansamycin HSP90 Inhibitor, AT13387, in Patients with Metastatic Solid Tumors. Clinical Cancer Research, In Press.
- 3. Alice T. Shaw, M.D., Ph.D., Dong-Wan Kim, M.D., Ph.D., Kazuhiko Nakagawa, M.D., Ph.D., et.al. Crizotinib versus Chemotherapy in Advanced ALK-Positive Lung Cancer. N Engl J Med 2013; 368:2385-2394 June 20, 2013.
- 4. Besse, et al. A study of Hsp90 inhibitor AT13387 alone and in combination with crizotinib (CZT) in the treatment of non-small cell lung cancer (NSCLC). Presented at ESMO 2014, abstract 1231PD.