RESULTS FROM A RANDOMIZED PHASE 2 STUDY OF GUADECITABINE, A NOVEL HYPOMETHYLATING AGENT (HMA), IN PATIENTS WITH RELAPSED OR REFRACTORY INTERMEDIATE OR HIGH RISK MYELODYSPLASTIC SYNDROMES (MDS) OR CHRONIC MYELOMONOCYTIC LEUKEMIA (CMML) Guillermo Garcia-Manero¹, Gail Roboz², Michael Savona³, Patricia Kropf⁴, Casey O'Connell⁵, Katherine Walsh^{6,} Scott Lunin⁷, Raoul Tibes⁸, Naval G. Daver¹, Elias Jabbour¹, Todd Rosenblat⁹, Elizabeth A. Griffiths¹⁰, Joseph Mace¹¹, Nikola A. Podoltsev¹², Jean-Pierre Issa¹³, Sue Naim¹⁴, Yong Hao¹⁴, Mohammad Azab¹⁴, Hagop Kantarjian¹ University of Texas, MD Anderson Cancer Center, Houston, TX¹, Weill Cornell/NY Presbyterian Medical Center, Nashville, TN³, Fox Chase Cancer Center, Philadelphia, PA⁴, USC Keck School of Medicine, Los Angeles, CA⁵, The Ohio State University, Columbus, OH⁶, Florida Cancer Specialists, Fort Myers, FL⁷, Mayo Clinic Arizona, Scottsdale, AZ⁸, New York-Presbyterian/Columbia University Medical Center, New York, NY⁹, Roswell Park Cancer Institute, Buffalo, NY¹⁰, Florida Cancer Specialists, St. Petersburg, FL¹¹, Yale University School of Medicine, New Haven, CT¹², Fels Institute, Temple University, Philadelphia, PA¹³, Astex Pharmaceuticals Inc., Pleasanton, CA.¹⁴ ### Background Guadecitabine (SGI-110) is a next generation hypomethylating agent (HMA) designed as a dinucleotide of decitabine and deoxyguanosine that is resistant to deamination by cytidine deaminase (CDA). This results in a prolonged in vivo exposure to decitabine following small volume subcutaneous (SC) administration of guadecitabine. Safety and clinical activity in resistant MDS and AML have been shown in a Phase 1 trial (Issa et al, Lancet Oncology, 2015). Figure 1: Guadecitabine: Next Generation HMA #### Methods Figure 2: Phase 2 Study Design - Primary Endpoint: Overall Response (CR, PR, mCR, HI) - Secondary Endpoints: Transfusion independence, Overall Survival, Safety #### Results **Table 1: Patient Characteristics** | Patient Characteristics | | 60 mg/m ²
QD x5
(n=26) | 90 mg/m ²
QD x5
(n=27) | Total
(n=53) | |---------------------------------|------------------------|---|---|-------------------------| | Median Age (range) | | 73 (55-85) | 72 (52-89) | 72 (52-89) | | Gender | M
F | 62%
38% | 59%
41% | 60%
40% | | ECOG PS | 0
1
2 | 23%
54%
23% | 19%
63%
19% | 21%
58%
21% | | Prior decitabine (DAC) (%) | | 23% | 41% | 32% | | Prior azacitidine (AZA) (%) | | 77% | 78% | 77% | | Prior DAC and AZA | | 8% | 19% | 13% | | Median Prior regimens | | 1 (1-4) | 1 (1-4) | 1 (1-4) | | MDS by IPSS Classification CMML | Int-1
Int-2
HR | 8%
23%
35%
35% | 7%
26%
59%
4% * | 8%
25%
47%
19% | | Time from last prior Tx | <3 m
3-6 m
> 6 m | 67%
12%
21% | 52%
33%
15% | 59%
23%
18% | | Duration of prior HMA | < 6 m
> 6 m | 5 (19%)
21 (81%) | 8 (30%)
19 (70%) | 13 (25%)
40 (75%) | | Median BM Blasts % | | 5.5% (0-18%) | 9% (1-19%) | 8% (0-19%) | | Baseline BM Blasts* | ≤ 5%
> 5% | 13 (50%)
13 (50%) | 6 (22%)
21 (78%) | 19 (36%)
34 (64%) | | Median Neutrophils/μL | | 1170 | 510 | 810 | | Median Platelets/μL | | 39,000 | 35,000 | 37,000 | | Median Hb g/dL | | 9.25 (7.1-12.9) | 9.5 (7.4-13.5) | 9.3 (7.1-13.5) | | RBCs or Platelet transf. dep. | | 62% | 70% | 66% | | *P = 0.047 | | | *P = 0.005 | | #### **Table 2: Treatment and Follow-up** | Treatment Cycles | 60 mg/m ² /d x5
(N=26) | 90 mg/m ² /d x5
(N=27) | Total
N=53 | |------------------------------------|--------------------------------------|--------------------------------------|---------------------| | Median # Tx Cycles | 4 (1-22) | 5 (1-29) | 5 (1-29) | | Dose Reduced Cycles | 36% | 34% | 35% | | Dose Delayed Cycles | 47% | 43% | 45% | | Median Follow Up (range) in months | 25.2
(20.4-29.5) | 24.4
(19.4-30.1) | 25.0
(19.4-30.1) | ### Results cont. **Table 3: Response to Treatment** | Response | 60 mg/m ² /d x5
N=26
N (%) | 90 mg/m ² /d x5
N=27
N (%) | Total
N=53
N (%) | |----------|---|---|------------------------| | CR | 1 (3.8%) | 1 (3.7%) | 2 (3.8%) | | mCR * | 4/13 (31%) | 11/21 (52%) | 15/34 (44%) | | PR | 0 | 0 | 0 | | HI | 5 (19.2%) | 6 (22.2%) | 11 (20.8%) | ^{*} Evaluated only in patients who had BM blasts > 5% at baseline #### **Table 4: Transfusion Independence (Combined Data)** | Guadecitabine 8-week RBCs Transfusion Independent n (%) | 4/33 (12%) | |---|------------| | Guadecitabine 8-week Platelets Transfusion Independent n (%) | 6/16 (38%) | ^{*} Evaluated only for patients who were transfusion dependent at baseline Figure 3: Overall Survival By Dose ### **Table 5: Safety AEs Grade ≥ 3 Regardless of Tx Relationship** | | 60 mg/m ² | 90 mg/m ² | Total | |---------------------|----------------------|----------------------|-------| | | N=26 | N=27 | N=53 | | Thrombocytopenia | 54% | 56% | 55% | | Anemia | 54% | 48% | 51% | | Neutropenia | 50% | 41% | 45% | | Febrile neutropenia | 38% | 37% | 38% | | Pneumonia | 23% | 41% | 32% | | Fatigue | 12% | 15% | 13% | | Leukopenia | 8% | 15% | 11% | | Sepsis | 8% | 15% | 11% | #### **All-Cause Early Mortality** | Dose | N | 30-day | 60-day | 90-day | |----------------------|----|----------|----------|-----------| | 60 mg/m ² | 26 | 0 | 0 | 1 (3.8%) | | 90 mg/m ² | 27 | 1 (3.7%) | 1 (3.7%) | 4 (14.8%) | | Total | 53 | 1 (1.8%) | 1 (1.8%) | 5 (9.4%) | ## **Summary and Conclusions** - Patient characteristics generally balanced between the 2 doses of guadecitabine except for - Significantly higher % of CMML in the 60 mg/m² arm - Efficacy: Both doses were clinically active in relapsed/refractory MDS or CMML previously treated with HMAs, with 4% CR and 44% mCR in patients with baseline BM blasts >5%. - Safety: Both doses well tolerated with slightly higher incidence of pneumonia, leukopenia, and sepsis for the 90 mg/m² dose (not significant). - No significant differences between the 2 doses in terms of efficacy and safety. - The Phase 2 study supports Phase 3 development of guadecitabine 60 mg/m² dailyx5 in relapsed/refractory MDS and CMML. - Phase 3 randomized study is being planned to start later this year (2:1 Randomization of Guadecitabine vs Treatment Choice). #### Reference Issa JP et al, Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukemia: a multicenter, randomized, dose-escalation phase 1 study, Lancet Oncol. 2015 Sep;16(9):1099-1110.