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• TP53 is a tumour suppressor gene that negatively controls many key hallmarks 

of cancer1,2. The TP53 pathway is frequently inactivated via mutation or an p53-

MDM2 interaction.1,2,3 

• Inhibition of the p53-MDM2 interaction leads to activation of TP53 in TP53 wild-

type tumours.3,4

• MDM2 antagonists have shown modest anti-tumour activity in the clinic and 

have dose limiting haematological toxicities.5,6 

• ASTX295 is an oral, potent inhibitor of the p53-MDM2 protein-protein 

interaction with bone marrow sparing characteristics7, which modulates the 

TP53 pathway and induces apoptosis in in-vitro and in-vivo TP53 wild-type 

models.8

• ASTX295 is currently being evaluated in a Phase 1/2 study in patients with 

advanced solid tumours (NCT03975387).9

• TP53 wild-type status may be insufficient to predict sensitivity to ASTX295. 

Multi-omics based computational approaches were used to predict potential 

biomarkers of response to ASTX295 in TP53 wild-type tumours.

Figure 1: Targeting the p53-MDM2 

interaction

Cell panel drug screening

• ASTX295 sensitivity was quantified by cell viability for 219 TP53-

wild type cancer cell lines from 28 different tumour types.

• Genomic features of cell lines such as mutations, copy number 

and hypermethylation were obtained from Iorio et al.10

• ANOVA was used to identify genomic features significantly 

associated to ASTX295 response in cancer cell lines.

Apoptotic effects in mesothelioma primary cell lines

• ASTX295 induced anti-proliferative and apoptotic effects were 

assessed in an independent panel of 12 patient-derived 

mesothelioma primary cell lines.

• Apoptosis induced by ASTX295 was measured as percentages of 

cells with activated caspase-3 at 1μM concentration following 72-

hr treatment (apoptotic cut-off = >40% caspase-3 activation).

• Differential gene expression and pathway enrichments between 

apoptotic and non-apoptotic cell lines performed using DESeq212 

and Gene Set Enrichment Analysis (GSEA)13.

RESULTS

Figure 3: Activity area of ASTX295 across 219 

TP53 type-wild cancer cell lines

(colours denote different tumour types)
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1. Cell panel analysis 

• ASTX295 sensitivity is significantly associated with CDKN2A-

loss in the cell panel drug screening data. 

• The mesothelioma indication was selected as potential 

indication for follow-up experimental validation due to high 

frequency of CDKN2A-loss (based on TCGA).

Figure 5a: Heatmap of significantly 

differentially expressed genes between 

apoptotic and non-apoptotic 

mesothelioma cell lines

2. Differential gene expression of mesothelioma primary cell lines

• 105 and 123 genes were predicted up-regulated and down-regulated respectively in apoptotic compared to non-apoptotic cell lines (more than 2-

fold expression & adjusted p-value < 1e-7).

• The “Interferon Signalling” pathway was predicted as significantly up-regulated in apoptotic cell lines (Normalised enrichment score = 1.87 and 

FDR q-value < 0.002).

• Using QIAGEN’s Ingenuity pathway analysis17, upstream regulator analysis and network analysis, we identified 15 activated transcription factors 

(activation score >2 & p-values <0.05) including many Interferon Response Proteins (IRFs) and Interferon Inducible Genes (IFIs).
Figure 4: Volcano plot showing association of molecular 

features to ASTX295 sensitivity in TP53 wild-type cell lines

METHODS

3. Confirmation in mesothelioma patient dataset

• Identified 25 co-expression modules (M1-M25) and the module M10 was identified as positively correlated (p-value = 4e-04) to TP53-wild and CDKN2A-loss group of patients.

• Genes in module M10 were significantly enriched in Interferon signalling pathway. Hub genes in module M10 identified based on high intramodular connectivity were comprised of IRF genes.

Table 1: Anti-proliferation and apoptotic effects of 

ASTX295 in human patient-derived mesothelioma 

cell lines. All cell lines were obtained from 

Mesobank UK11

TCGA mesothelioma patient dataset

• TCGA mesothelioma patient gene expression data was obtained from Xena14.

• Weighted gene co-expression network analysis was performed using the WGCNA15 to identify expression modules and hub 

genes from the mesothelioma expression data (81 samples & 27,501 protein coding genes).

• Co-expression modules were correlated to mesothelioma clinical characteristics and genetics features.

• R package anRichment16 was used for functional enrichment of significantly correlated expression modules.

Figure 5b: GSEA enrichment plot of 

mesothelioma cell lines gene expression 

data

CONCLUSIONS

Figure 6b: Schematic representation of 

correlation of expression modules to clinical and 

genetic features of mesothelioma

Figure 6a: The cluster dendrogram of 25 co-expression modules each uniquely 

defined by a distinct colour. Each colour represents a module

Figure 6d: Word cloud summaries of GO enrichment analysis of module M10  

using GOsummaries19

Figure 5c: Genemania18 network analysis of 

significantly up-regulated genes in apoptotic 

cell lines

• In-vitro cell line screening combined with molecular features of 

cell lines identified CDKN2A loss as a marker of sensitivity to 

ASTX295 in TP53 wild type cell lines.

• Sensitivity due to CDKN2A-loss was observed in an 

independent dataset of patient-derived human mesothelioma 

cell lines.

• Assessment of apoptosis and differential gene expression 

between apoptotic and non-apoptotic mesothelioma cell lines 

provided an additional way to further refine the potential patient 

population.

• Using transcriptomics and integrated computational 

approaches, including WGCNA and upstream regulator 

analyses, identified the Interferon Signalling pathway and IRFs 

as potential regulators associated with response to ASTX295, 

both in mesothelioma cell lines and patient data.

• Overall, the approach helped to identify novel biomarkers 

associated with ASTX295 sensitivity, and could provide new 

insights into the underlying mechanism of ASTX295 response.
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Figure 6c: Heatmap showing correlation of expression 

modules (vertical axis) to different genetic features 

(horizontal axis).  Module M10 positively correlated to TP53-

wild and CDKN2A-loss 

Cancer cell lines

Figure 2: Structure of ASTX295, an 

isoindolinone-based MDM2 inhibitor. 

ASTX295 occupies three subpockets on 

MDM2 involved in the recognition of the 

residues Phe19, Trp23, and Leu26 of the 

transactivation domain of p53

http://www.astx.com/
https://qiagen.my.salesforce-sites.com/KnowledgeBase/articles/Knowledge/Upstream-Regulator-Analysis
https://qiagen.my.salesforce-sites.com/KnowledgeBase/articles/Knowledge/Upstream-Regulator-Analysis

	Slide 0

