

Identification of biomarkers of response to MDM2 inhibition in solid tumours using computational, multi-omics approaches

Harpreet Saini, Maria Ahn, George Ward, Justyna Kucia-Tran, Christina Gewinner, Nicola Ferrari, Jessica Brothwood, Luke Bevan, Matthew Davis, Lynsey Fazal, Martin Sims, Marc O'Reilly, Gianni Chessari, Roberta Ferraldeschi, John Lyons, Nicola Wallis, Neil Thompson

INTRODUCTION

- TP53 is a tumour suppressor gene that negatively controls many key hallmarks of cancer^{1,2}. The *TP53* pathway is frequently inactivated via mutation or an p53-MDM2 interaction.^{1,2,3}
- Inhibition of the p53-MDM2 interaction leads to activation of TP53 in TP53 wildtype tumours.^{3,4}
- MDM2 antagonists have shown modest anti-tumour activity in the clinic and have dose limiting haematological toxicities.^{5,6}
- ASTX295 is an oral, potent inhibitor of the p53-MDM2 protein-protein interaction with bone marrow sparing characteristics⁷, which modulates the TP53 pathway and induces apoptosis in in-vitro and in-vivo TP53 wild-type models.⁸
- ASTX295 is currently being evaluated in a Phase 1/2 study in patients with advanced solid tumours (NCT03975387).9
- TP53 wild-type status may be insufficient to predict sensitivity to ASTX295. Multi-omics based computational approaches were used to predict potential biomarkers of response to ASTX295 in TP53 wild-type tumours.

METHODS

Cell panel drug screening

- ASTX295 sensitivity was quantified by cell viability for 219 TP53wild type cancer cell lines from 28 different tumour types.
- Genomic features of cell lines such as mutations, copy number and hypermethylation were obtained from lorio et al.¹⁰
- ANOVA was used to identify genomic features significantly associated to ASTX295 response in cancer cell lines.

Apoptotic effects in mesothelioma primary cell lines

- ASTX295 induced anti-proliferative and apoptotic effects were assessed in an independent panel of 12 patient-derived mesothelioma primary cell lines.
- Apoptosis induced by ASTX295 was measured as percentages of cells with activated caspase-3 at 1µM concentration following 72hr treatment (apoptotic cut-off = >40% caspase-3 activation).
- Differential gene expression and pathway enrichments between apoptotic and non-apoptotic cell lines performed using DESeq2¹² and Gene Set Enrichment Analysis (GSEA)¹³.

TCGA mesothelioma patient dataset

- TCGA mesothelioma patient gene expression data was obtained from Xena¹⁴.
- Weighted gene co-expression network analysis was performed using the WGCNA¹⁵ to identify expression modules and hub genes from the mesothelioma expression data (81 samples & 27,501 protein coding genes).
- Co-expression modules were correlated to mesothelioma clinical characteristics and genetics features.
- R package anRichment¹⁶ was used for functional enrichment of significantly correlated expression modules.

Table 1: Anti-proliferation and ASTX295 in human patient-de cell lines. All cell lines we Mesobank U		
Cell line	Subtype	IC50 (μΜ)
#40	Epitheloid	0.009
#35	Biphasic	0.04
#2	Biphasic	0.062
MESO_50T	Biphasic	0.067
#52	Epitheloid	0.076
#12	Biphasic	0.078
#24	Sarcomatoid	0.094
#18	Biphasic	0.11
#19	Biphasic	0.17
#26	Biphasic	0.36
MESO 7T	Biphasic	0.36
MESO_29T	Biphasic	>10

¹Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK

Poster presented at AACR Annual Meeting April 5-10, 2024 (Poster available to download from Astex's website at <u>www.astx.com</u>)

	CONCLUSIONS
poptotic cell lines (more than 2-	 In-vitro cell line screening combined with molecular features of cell lines identified CDKN2A loss as a marker of sensitivity to ASTX295 in TP53 wild type cell lines.
d enrichment score = 1.87 and	 Sensitivity due to CDKN2A-loss was observed in an independent dataset of patient-derived human mesothelioma coll lines
5 activated transcription factors Genes (IFIs). nemania ¹⁸ network analysis of p-regulated genes in apoptotic	 Assessment of apoptosis and differential gene expression between apoptotic and non-apoptotic mesothelioma cell lines provided an additional way to further refine the potential patient
cell lines	 Using transcriptomics and integrated computational approaches, including WGCNA and upstream regulator analyses, identified the Interferon Signalling pathway and IRFs as potential regulators associated with response to ASTX295, both in mesothelioma cell lines and patient data.
F7 OASL IRF3 ISG15 IFIT3 CXCL10	 Overall, the approach helped to identify novel biomarkers associated with ASTX295 sensitivity, and could provide new insights into the underlying mechanism of ASTX295 response.
IRF1 PARP12	REFERENCES
B JUN	1) Mantovani et al. (2019) Mutant p53 as a guardian of the cancer cell. Cell Death and Differentiation 26, 199-212
e to type I interferon r response to type I interferon e regulation of type I interferon	 Hassin and Oren (2023) Drugging p53 in cancer: one protein, many targets. Nature Review Drug Discovery 22(2), 127-144.
	 3) Patrick Chene (2003) Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nature Reviews Cancer 3, 102-109. 4) Zhu et al (2022) Targeting p53–MDM2 interaction by small-molecule inhibitors:
	 learning from MDM2 inhibitors in clinical trials. Journal of Hematology and Oncology 15, Article number 91. 5) Ray-Coquard et al (2012) Potent and orally active small-molecule inhibitors of
	 the MDM2-p53 interaction. Lancet Oncology 13, 1133-1140. 6) Pi et al (2019) Evaluating dose-limiting toxicities of MDM2 inhibitors in patients with solid organ and hematologic malignancies: A systematic review of the literature. Leukemia Research 86, 106222.
correlation of expression different genetic features positively correlated to <i>TP53</i> - <i>KN2A</i> -loss	 7) AACR Annual Meeting 2024 – Poster 21, abstract 3333. 8) AACR Annual Meeting 2024 – Poster 12, abstract 666. 9) AACR Annual Meeting 2024 – CT066/16. 10) Iorio et al (2016) A landscape of pharmacogenomic interactions in cancer. Cell 3, 740-754. 11) Rintoul et al (2016) Mesobank UK: an international mesothelioma bioresource.
0.38 (4e-04)	Thorax 71, 380-382. 12) Love et al (2014) Moderated estimation of fold change and dispersion for RNA- seq data with DESeq2. Genome Biology 15, Article number: 550.

13) Subramanian et al (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102 (43), 15545-15550. 14) https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Mesothelioma %20(MESO)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A4 15) Langfelder and Horvath (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, Article number: 559. 16) https://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/GeneAnnot 17) https://qiagen.my.salesforce-

- wledge/Upstream-Regulator-Analysis
- 18) Warde-Farley (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research 38, 214-220.
- 19) Kolde and Vilo (2015) GOsummaries: an R Package for Visual Functional Annotation of Experimental Data. F1000 Research 4, 574.

