2022 EHA: COMBINING THE IAP ANTAGONIST, TOLINAPANT, WITH A DNA HYPOMETHYLATING AGENT ENHANCES ANTI-TUMOUR MECHANISMS IN PRECLINICAL MODELS OF T-CELL LYMPHOMA

View Poster
COMBINING THE IAP ANTAGONIST, TOLINAPANT, WITH A DNA HYPOMETHYLATING AGENT ENHANCES ANTI-TUMOUR MECHANISMS IN PRECLINICAL MODELS OF T-CELL LYMPHOMA

Abstract:
Background: Tolinapant is a potent, non-peptidomimetic antagonist of cIAP1, cIAP2 and XIAP. In a Phase 2 trial (NCT02503423), tolinapant has shown activity against highly pre-treated peripheral and cutaneous T-cell lymphoma (Samaniego et al., Hematological Oncology, 2019). Hypomethylating agents (HMAs) have also shown clinical responses in some subsets of PTCL (Lemonnier et al., Blood, 2019). Both HMAs and IAP antagonists show immunomodulatory anti-cancer potential in preclinical studies.

Aims: Here we have undertaken a biomarker-driven approach to understand the potential for induction of immunogenic forms of cell death, such as necroptosis, by rational combination of our clinical compounds in
preclinical models of TCL.

Methods: On-target effects of decitabine and tolinapant were measured by analysing levels of DNMT1 and cIAP1,respectively, by Western blotting in mouse and human cell lines. Levels of key necroptosis biomarkers (RIPK3, MLKL) were also monitored by Western blotting to provide evidence of lytic cell death contributing to a potential immune response. Karpas-299 cells genetically-manipulated to express RIPK3 were used to demonstrate involvement of necroptosis in drug-induced cell death (Cytotox NIR) in vitro. Cell death was monitored by viability (CellTiterGlo)or real-time microscopy (IncuCyte) assays. Levels of key immunomodulatory mediators or DAMPS were measured in tissue culture supernatants and mouse plasma. Levels of methylation in RIPK3 promoter regions were measured by pyrosequencing after bisulfite conversion. Comparative changes in gene expression were measured by RT-qPCR.

Results:
TCL cell lines treated with tolinapant, decitabine or both led to depletion of cIAP1 and DNMT1 in TCL cell lines,
demonstrating target engagement of both agents. The combination of tolinapant and decitabine synergistically
reduced viability of some human T-cell lymphoma cell lines.
Some cell lines, including Karpas-299, were resistant to tolinapant treatment and showed low expression of RIPK3,
which was found to be due to promoter methylation. Increased expression of RIPK3 in Karpas-299 by genetic
manipulation or by decitabine treatment resulted in enhanced lytic cell death upon tolinapant treatment.
Decitabine and tolinapant treatments resulted in expression of cytokines, chemokines and DAMPs, suggesting
potential for immune activation and the effects were enhanced when combined. Furthermore, normally silenced
cancer/testis antigen expression was increased by decitabine, potentially increasing the immunogenicity of the cells.
Evaluation of the combination of agents in mouse models suggested that increased necroptosis signal and immune-potentiating biomarker modulation can be achieved in vivo.

Summary/Conclusion: These data demonstrate that hypomethylating agents enhance immunogenic cell death induced by tolinapant through the re-expression of genes in the necroptotic pathway. In addition, modulation of cytokine response and cancer/testis antigen expression could enhance anti-tumour response. These findings provide a strong rationale to explore this combination clinically.