2021 ASH: Combining the IAP Antagonist Tolinapant with a DNA Hypomethylating Agent Enhances Immunogenic Cell Death in Preclinical Models of T-Cell Lymphoma

View Poster:

Combining the IAP Antagonist Tolinapant with a DNA Hypomethylating Agent Enhances Immunogenic Cell Death in Preclinical Models of T-Cell Lymphoma

Abstract:

Introduction:  Tolinapant is a potent, non-peptidomimetic antagonist of cIAP1, cIAP2 and XIAP.  In ongoing Phase 2 trial (NCT02503423), tolinapant has shown activity against highly pre-treated peripheral and cutaneous T-cell lymphoma (Samaniego et al., Hematological Oncology, 2019). Hypomethylating agents (HMAs) have also shown clinical responses in some subsets of PTCL (Lemonnier et al., Blood, 2019). Both HMAs and IAP antagonists show immunomodulatory anti-cancer potential in pre-clinical studies. A Phase 1 clinical study investigating the combination of tolinapant and ASTX727 (oral decitabine) in AML is currently in progress (NCT04155580). Here we have undertaken a biomarker-driven approach to understand the potential for induction of immunogenic forms of cell death (ICD), such as necroptosis, by rational combination of our clinical compounds in pre-clinical models of T-cell lymphoma (TCL).

Methods:  On-target effects of decitabine and tolinapant were measured by analysing levels of DNMT1 and cIAP1, respectively, by Western blotting in mouse and human cell lines. Levels of key apoptosis, necroptosis or pyroptosis biomarkers were also monitored by Western blotting to provide evidence of lytic cell death contributing to a potential immune response. RIPK3- or MLKL-knockout cell lines were generated by CRISPR to demonstrate involvement of necroptosis in drug-induced cell death in a T-cell lymphoma cell line (BW5147.G.1.4) in vitro. Cell death was monitored by viability (CellTiterGlo) or real-time microscopy (IncuCyte) assays. Levels of key inflammatory mediators or DAMPS were measured in tissue culture supernatants and mouse plasma by Luminex assay (Ampersand).

Results:  Combined treatment of tolinapant and decitabine led to depletion of cIAP1 and DNMT1 in TCL cell lines, demonstrating on-target activity of tolinapant and decitabine, respectively. The combination of tolinapant and decitabine acted synergistically in mouse and human T-cell lymphoma cell lines to reduce viability in proliferation assays.

Necroptosis was induced by decitabine or tolinapant alone in mouse TCL cell lines with robust activation of the RIPK1/RIPK3/MLKL necroptosis pathway when caspase activity was inhibited, and the combination of both agents enhanced loss of viability.

Furthermore, we demonstrated decitabine treatment led to re-expression of both RIPK3 and MLKL in mouse cell lines, supporting published evidence that methylation can silence these key biomarkers (Koo et al., Cell Research, 2015; Koch et al., Neoplasia, 2021). Enhanced release of chemokine, cytokine and DAMPs was demonstrated with the combination of agents in vitro and in vivo.

By removal of key necroptosis pathway components using CRISPR, we confirmed the importance of this lytic cell death pathway by demonstrating that RIPK3-/- and MLKL-/- T-cell lymphoma (BW5147.G.1.4) cell lines had reduced necroptosis potential after treatment with tolinapant or decitabine alone or in combination; and demonstrate reduced release of inflammatory mediators in vitro.

Finally, our in vivo evaluation of the combination of agents in mouse syngeneic models suggested that increased anti-tumour activity and immune-potentiating systemic biomarker modulation can be achieved with a tolerated dosing regimen of both compounds.

Conclusion:  These data demonstrate that decitabine enhances immunogenic cell death induced by tolinapant through the re-expression of genes in the necroptotic pathway.  This finding provides strong rationale to explore this combination clinically.

Ferrari, et al. “Antagonism of inhibitors of apoptosis proteins reveals a novel, immune response-based therapeutic approach for T-cell lymphoma”, 2021

Blood Advances. 2021 Oct 26;5(20):4003-4016.

DOI: 10.1182/bloodadvances.2020003955