Identification of potent small molecule allosteric inhibitors of SHP2

View Poster:

Identification of potent small molecule allosteric inhibitors of SHP2

Summary
SHP2 is a ubiquitously expressed protein tyrosine phosphatase required for growth factor signalling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes.

Genetic knockdown and pharmacological inhibition of SHP2 inhibits proliferation of RTK-driven cancer cell lines and suppresses RAS/MAPK signalling.

SHP2 inhibitors are a promising therapeutic approach as RTK deregulation often leads to a wide range of cancers and several compounds are being tested in the clinic.

Using our fragment-based screening approach, PyramidTM, we identified fragment hits binding to the tunnel region<sup>1</sup> between the phosphatase domain and the C-SH2 domain of SHP2 which were improved using structure-guided design.

Here we describe the optimisation of mM fragment hits into potent SHP2 antagonists with in vitro and in vivo anti-tumour activity.

Combined inhibition of SHP2 and ERK enhances anti-tumor effects in preclinical models

View Poster:

Combined inhibition of SHP2 and ERK enhances anti-tumor effects in preclinical models

Summary

MAPK signalling is frequently dysregulated in cancer. The pathway can Panel composition and the number of responding cell lines Examples of dose-response curves Anti-tumor activity of SHP2i, ASTX029 and combination in MIA PaCa-2 xenograft be targeted by inhibition of different nodes and is tightly regulated by feedback mechanisms. Resistance to single-agent therapies frequently occurs through several different mechanisms including upregulation of receptor tyrosine kinases (RTKs), therefore, combination therapies are of interest.

The Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a key regulator of MAPK pathway downstream of RTKs and upstream of RAS, whilst ERK acts at the bottom of the pathway phosphorylating multiple substrates.

We investigated the potential of targeting the MAPK pathway through a combination of SHP2 and ERK inhibition in preclinical models. Using a SHP2 inhibitor (SHP2i) discovered by our structure-based drug discovery programme and ASTX029, an ERK inhibitor in a Phase I-II clinical trial (NCT03520075), we tested panels of cell lines representing various indications and genetic backgrounds in vitro and confirmed enhanced tumor growth inhibition by the combination in a xenograft model.

The clinical candidate, ASTX029, is a novel, dual mechanism ERK1/2 Inhibitor and has potent activity in MAPK-activated cancer cell lines and in vivo tumor models

View Poster:

The clinical candidate, ASTX029, is a novel, dual mechanism ERK1/2 Inhibitor and has potent activity in MAPK-activated cancer cell lines and in vivo tumor models

Summary

  • The MAPK signaling pathway is commonly upregulated in human cancers due to oncogenic mutations of upstream
    components such as BRAF or KRAS.
  • MAPK pathway inhibition has been clinically validated by BRAF and MEK inhibitors.
  • As the final node in the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers, including those resistant to upstream inhibition.
  • Previously we described the fragment-based discovery of a chemical series targeting ERK[1]. Here we disclose for the first time the structure of the clinical candidate, ASTX029.

References:

  1. Heightman et al., (2018). J Med Chem 61; 4978

Cadilla et al., “The exploration of aza-quinolines as hematopoietic prostaglandin D synthase (H-PGDS) inhibitors with low brain exposure”; Bioorganic & Medicinal Chemistry, 2020

Cadilla et al., “The exploration of aza-quinolines as hematopoietic prostaglandin D synthase (H-PGDS) inhibitors with low brain exposure”; Bioorganic & Medicinal Chemistry, 2020

https://doi.org/10.1016/j.bmc.2020.115791

2020 AACR: Fragment-based drug discovery to identify small molecule allosteric inhibitors of SHP2

View Poster:

2020 AACR: Fragment-based drug discovery to identify small molecule allosteric inhibitors of SHP2

Downes et al., “Design and Synthesis of 56 Shape-Diverse 3D Fragments”; Chemistry: A European Journal, 2020

Downes et al., “Design and Synthesis of 56 Shape-Diverse 3D Fragments”; Chemistry: A European Journal, 2020

https://chemistry-europe.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/chem.202001123

2020 AACR: ASTX660, a non-peptidomimetic antagonist of cIAP1/2 and XIAP, promotes an anti-tumor immune response in pre-clinical models of T-cell lymphoma

View Poster:

ASTX660, a non-peptidomimetic antagonist of cIAP1/2 and XIAP, promotes an anti-tumor immune response in pre-clinical models of T-cell lymphoma

Summary

  • ASTX660 is a potent, non-peptidomimetic antagonist of the cellular and X-linked inhibitors of apoptosis proteins (cIAP1/2 and XIAP), which is currently being tested in a first in human phase I-II study in patients with advanced solid tumors and lymphomas (NCT02503423) where preliminary activity has been described in a group of T-cell lymphomas (1)
  • Herein, together with its well-characterized pro-apoptotic effect (2), we describe a new role for ASTX660 as an immunomodulatory molecule capable of promoting an anti-tumor immune response in pre-clinical models of T-cell lymphoma. These data add to the description of ASTX660’s mode of action and our ongoing understanding of the preliminary clinical efficacy that has been reported.

References:
1. Samaniego F, et al., Hematological Oncology. 2019;37(S2):527.
2.Ward GA et al., Mol Can Ther. 2018;17(7):1381-91

2020 AACR: Different pharmacodynamic profiles of ERK1/2 inhibition can elicit comparable anti-tumor activity

View Poster:

Different pharmacodynamic profiles of ERK1/2 inhibition can elicit comparable anti-tumor activity

Summary

  • The mitogen activated protein kinase (MAPK) pathway is frequently dysregulated in cancer, leading to activation of the downstream kinases ERK1/2 (ERK). Phosphorylation of ERK substrates such as p90RSK (RSK) leads to cancer cell proliferation.
  • Clinical efficacy can be limited by toxicity, so it is important to establish an optimal, tolerated dose schedule which maximises efficacy. Preclinical studies investigating the duration of target engagement required for efficacy can inform on dose schedules to be tested in the clinic.
  • A number of compounds under clinical development target ERK activity directly: we have recently described the development of a novel, potent and selective small molecule inhibitor of ERK, the lead compound, using fragment-based drug discovery1.

2019 AD/PD: Discovering small-molecule modulators of autophagy for neurodegeneration

View Poster:

Discovering Small-Molecule Modulators of Autophagy for Neurodegeneration

Summary

  • Autophagy is a major protein degradation pathway with proven roles in protecting neurons against accumulation of aggregation-prone proteins and obsolete mitochondria. Genetics of human-disease and mouse-knockout studies highlight the connection between autophagy dysfunction and neurodegeneration, and therefore finding a way to augment autophagic-flux seems a promising therapeutic strategy (Rubinsztein DC, Bento CF & Deretic V. Journal of Experimental Medicine 2015; Bento CF et al. Annual Review of Biochemistry 2016).
  • Fragment-based drug discovery (FBDD) has the potential to deliver potent, selective and CNS-penetrant small-molecules capable of inducing autophagy in the brain. For that purpose, the use of cell-based assays that accurately monitor the ability of small-molecules to modulate autophagy in a high-throughput- and unbiased-manner is instrumental.

2018 EORTC: A novel ERK1/2 inhibitor has potent activity in NRAS-mutant melanoma cancer models

View Poster:

A novel ERK1/2 inhibitor has potent activity in NRAS-mutant melanoma cancer models

Summary

  • NRAS mutations occuring 15- 20% of melanoma cancer patients. Currently there is no approved molecularly targeted therapy for NRAS mutant melanoma, an indication which is associated with aggressive clinical outcome and a poor prognosis.
  • The NRAS mutation leads to constitutive activation of the MAPK pathway. AsERK1/2(ERK) is the primary downstream effect or of the MAPK pathway, its direct inhibition may provide an attractive therapeutic approach for the treatment of NRAS-mutant melanoma.
  • As previously described, using fragment-based drug discovery we have identified a novel and selective inhibitor of ERK which inhibits in vitro ERK catalytic activity as well as ERK phosphorylation 1.
  • Here, we demonstrate the in vitro and in vivo activity of a novel, highly potent, selective ERK inhibitor in models of NRAS-mutant melanoma.