2020 ASH: Anti-tumor Activity of ASTX029, a Dual Mechanism Inhibitor of ERK1/2, in Preclinical AML Models

View Poster:
Anti-tumor Activity of ASTX029, a Dual Mechanism Inhibitor of ERK1/2, in Preclinical AML Models

Abstract:

Oncogenic mutations in genes such as the RAS family (KRAS, NRAS or HRAS) or receptor tyrosine kinases (RTKs) drive tumor growth through aberrant activation of the mitogen activated protein kinase (MAPK) signaling pathway. Acute myeloid leukemia (AML) patients frequently exhibit activating mutations in MAPK pathway members, such as NRAS and KRAS, suggesting that these malignancies may be driven by aberrant activation of the MAPK pathway. Targeting of the MAPK pathway has been clinically validated in solid tumors, with agents targeting BRAF and MEK approved for the treatment of BRAF-mutant melanoma. However, there is currently no approved therapy directly targeting activated RAS family members and resistance to MAPK pathway inhibitors is frequently associated with reactivation of MAPK signaling. ERK1/2 (ERK) is a downstream node in the MAPK pathway and therefore represents an attractive therapeutic target for inhibition of MAPK signaling in these settings.

We have recently described in vivo anti-tumor activity in MAPK-activated solid tumor models following treatment with ASTX029, a highly potent ERK inhibitor developed using fragment-based drug design. ASTX029 has a distinctive ERK binding mode which confers dual mechanism inhibition of ERK, inhibiting both the catalytic activity of ERK and its phosphorylation by MEK. Here, we demonstrate that ASTX029 is also active in AML models and potently inhibits in vitro and in vivo MAPK signaling and growth in these models.

Using a panel of 15 AML cell lines, we investigated sensitivity to ASTX029 in vitro. We observed that 8 cell lines bearing mutations leading to increased MAPK pathway signaling were sensitive to treatment with ASTX029 with an average IC50 value of 47 nM, in contrast to an average IC50 value of 1800 nM for cell lines without activating mutations. The phosphorylation of RSK, a direct substrate of ERK, was suppressed for up to 24 h following treatment with ASTX029 in vitro. We have previously demonstrated good oral bioavailability for ASTX029 and once daily dosing resulted in significant tumor growth inhibition in AML cell line xenograft models. To confirm target engagement in vivo, we examined MAPK signaling in xenograft tissue and observed inhibition of the phosphorylation of RSK and of ERK itself, consistent with the dual mechanism of action proposed for ASTX029.

In summary, the ERK inhibitor, ASTX029, has potent activity against MAPK-activated tumor models, including AML models, and is now being tested in a Phase 1/2 clinical trial in advanced solid tumors (NCT03520075). These data highlight its therapeutic potential for the treatment of AML in patients with mutations leading to MAPK pathway activation and support further investigation in these patient populations.

Combined inhibition of SHP2 and ERK enhances anti-tumor effects in preclinical models

View Poster:

Combined inhibition of SHP2 and ERK enhances anti-tumor effects in preclinical models

Summary

MAPK signalling is frequently dysregulated in cancer. The pathway can Panel composition and the number of responding cell lines Examples of dose-response curves Anti-tumor activity of SHP2i, ASTX029 and combination in MIA PaCa-2 xenograft be targeted by inhibition of different nodes and is tightly regulated by feedback mechanisms. Resistance to single-agent therapies frequently occurs through several different mechanisms including upregulation of receptor tyrosine kinases (RTKs), therefore, combination therapies are of interest.

The Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a key regulator of MAPK pathway downstream of RTKs and upstream of RAS, whilst ERK acts at the bottom of the pathway phosphorylating multiple substrates.

We investigated the potential of targeting the MAPK pathway through a combination of SHP2 and ERK inhibition in preclinical models. Using a SHP2 inhibitor (SHP2i) discovered by our structure-based drug discovery programme and ASTX029, an ERK inhibitor in a Phase I-II clinical trial (NCT03520075), we tested panels of cell lines representing various indications and genetic backgrounds in vitro and confirmed enhanced tumor growth inhibition by the combination in a xenograft model.

The clinical candidate, ASTX029, is a novel, dual mechanism ERK1/2 Inhibitor and has potent activity in MAPK-activated cancer cell lines and in vivo tumor models

View Poster:

The clinical candidate, ASTX029, is a novel, dual mechanism ERK1/2 Inhibitor and has potent activity in MAPK-activated cancer cell lines and in vivo tumor models

Summary

  • The MAPK signaling pathway is commonly upregulated in human cancers due to oncogenic mutations of upstream
    components such as BRAF or KRAS.
  • MAPK pathway inhibition has been clinically validated by BRAF and MEK inhibitors.
  • As the final node in the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers, including those resistant to upstream inhibition.
  • Previously we described the fragment-based discovery of a chemical series targeting ERK[1]. Here we disclose for the first time the structure of the clinical candidate, ASTX029.

References:

  1. Heightman et al., (2018). J Med Chem 61; 4978

Kidger et al., “Dual-mechanism ERK1/2 inhibitors exploit a distinct binding mode to block phosphorylation and nuclear accumulation of ERK1/2”; Mol Cancer Ther, 2020

Kidger et al., “Dual-mechanism ERK1/2 inhibitors exploit a distinct binding mode to block phosphorylation and nuclear accumulation of ERK1/2”; Mol Cancer Ther, 2020

https://doi.org/10.1158/1535-7163.mct-19-0505