2020 AACR: ASTX660, a non-peptidomimetic antagonist of cIAP1/2 and XIAP, promotes an anti-tumor immune response in pre-clinical models of T-cell lymphoma

View Poster:

ASTX660, a non-peptidomimetic antagonist of cIAP1/2 and XIAP, promotes an anti-tumor immune response in pre-clinical models of T-cell lymphoma


  • ASTX660 is a potent, non-peptidomimetic antagonist of the cellular and X-linked inhibitors of apoptosis proteins (cIAP1/2 and XIAP), which is currently being tested in a first in human phase I-II study in patients with advanced solid tumors and lymphomas (NCT02503423) where preliminary activity has been described in a group of T-cell lymphomas (1)
  • Herein, together with its well-characterized pro-apoptotic effect (2), we describe a new role for ASTX660 as an immunomodulatory molecule capable of promoting an anti-tumor immune response in pre-clinical models of T-cell lymphoma. These data add to the description of ASTX660’s mode of action and our ongoing understanding of the preliminary clinical efficacy that has been reported.

1. Samaniego F, et al., Hematological Oncology. 2019;37(S2):527.
2.Ward GA et al., Mol Can Ther. 2018;17(7):1381-91

2020 EHA: Characterization of ASTX660, an antagonist of cIAP1/2 and XIAP, in mouse models of T cell lymphoma

View Poster:

Characterization of ASTX660, an antagonist of cIAP1/2 and XIAP, in mouse models of T cell lymphoma


Background:  ASTX660 is a potent, non-peptidomimetic antagonist of the cellular and X-linked inhibitors of apoptosis proteins (cIAP1/2 and XIAP), which is currently being tested in a first in human phase I-II study in patients with advanced solid tumor and lymphomas (NCT02503423). IAP antagonists have been reported to exhibit broad immuno-modulatory effects on both the innate and adaptive immune systems .

Aims:  We have investigated the profile of ASTX660 in preclinical T cell lymphoma models and evaluated ASTX660’s ability to enhance immune mediated killing of T cell lymphoma cells, both in vitro and in vivo.

Methods:  ASTX660 was tested in a panel of human and mouse tumor cell lines, assessing apoptosis, necroptosis and immunogenic cell death (ICD). ASTX660 was tested in vitro alone or with recombinant death receptor ligands (TNFa, FASL or TRAIL) and with or without caspase-8/RIPK inhibitors to demonstrate mechanism of action. Target engagement along with induction of apoptosis, necroptosis and ICD markers were analysed by Western blotting, and flow cytometry. Murine tumor models in immunocompetent and immunocompromised mice were utilised to evaluate the efficacy of ASTX660 in the presence or absence of an effective immune response. The Nanostring IO360 panel was used to assess immune cell recruitment.

Results:  ASTX660 antagonised IAPs in cell lines, as indicated by a decrease in cIAP1 protein levels and disruption of the XIAP:SMAC protein complex. In murine T cell lymphoma cell lines (BW5147, EL4 and L5178Y), ASTX660 treatment was associated with an increase in apoptosis or necroptosis and ICD biomarkers. In immunocompetent mice, administration of ASTX660 delivered a complete regression of BW5147 tumor growth, which was not seen in mice deficient in T and B cells. These mice remained refractory to subsequent rechallenge after initial complete regression. Biomarker evaluation from this model indicated a potent immunogenic/necroptotic response after ASTX660 dosing and upregulation of immune effector cells.

1. Michie J. et al., The Immuno-Modulatory Effects of Inhibitor of Apoptosis Proteins Antagonists, Cells, 2020, 9(1), 207.
2. A. Hollebecque et al., AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2019.


Ye, et al. “ASTX660, an antagonist of cIAP1/2 and XIAP, increases antigen processing machinery and can enhance radiation-induced immunogenic cell death in preclinical models of head and neck cancer”

Click link to view article



Inhibitor of apoptosis protein (IAP) antagonists have shown activity in preclinical models of head and neck squamous cell carcinoma (HNSCC), and work across several cancer types has demonstrated diverse immune stimulatory effects including enhancement of T cell, NK cell, and dendritic cell function. However, tumor-cell-intrinsic mechanisms for this immune upregulation have been largely unexplored. In this study, we show that ASTX660, an antagonist of cIAP1/2 and XIAP, induces expression of immunogenic cell death (ICD) markers in sensitive HNSCC cell lines in vitro. Experiments in syngeneic mouse models of HNSCC showed that ASTX660 can also enhance radiation-induced ICD in vivo. On a functional level, ASTX660 also enhanced killing of multiple murine cell lines by cytotoxic tumor-infiltrating lymphocytes, and when combined with XRT, stimulated clonal expansion of antigen-specific T lymphocytes and expression of MHC class I on the surface of tumor cells. Flow cytometry experiments in several human HNSCC cell lines showed that MHC class I (HLA-A,B,C) was reliably upregulated in response to ASTX660 + TNFα, while increases in other antigen processing machinery (APM) components were variable among different cell lines. These findings suggest that ASTX660 may enhance anti-tumor immunity both by promoting ICD and by enhancing antigen processing and presentation.


Mita, et al. “A Phase 1 Study of ASTX660, an Antagonist of Inhibitors of Apoptosis Proteins, in Adults With Advanced Cancers or Lymphoma”

Click link to view article




Purpose: This first-in-human, phase 1 study evaluated ASTX660, an oral, small-molecule antagonist of cellular/X-linked inhibitors of apoptosis proteins in patients with advanced solid tumors or lymphoma. Experimental Design: ASTX660 was administered orally once daily on a 7-day-on/7-day-off schedule in a 28-day cycle. Dose escalation followed a standard 3+3 design to determine the maximum tolerated dose and recommended phase 2 dose (RP2D). Dose expansion was conducted at the RP2D. Results: Forty-five patients received ASTX660 (range 15-270 mg/d). Dose-limiting toxicity of grade 3 increased lipase with or without increased amylase occurred in 3 patients at 270 mg/d and 1 patient at 210 mg/d. The maximum tolerated dose was determined to be 210 mg/d and the RP2D 180 mg/d. Common treatment-related adverse events included fatigue (33%), vomiting (31%), and nausea (27%). Grade ≥3 treatment-related adverse events occurred in 7 patients, most commonly anemia (13%), increased lipase (11%), and lymphopenia (9%). ASTX660 was rapidly absorbed, with maximum concentration achieved at ~0.5‒1.0 hour. An ~2-fold accumulation in area under the curve exposures was observed on day 7 vs 1. ASTX660 suppressed cellular inhibitor of apoptosis protein-1 in peripheral blood mononuclear cells, which was maintained into the second cycle beyond the off-therapy week at the 180-mg/d RP2D and above. Clinical activity was seen in a patient with cutaneous T-cell lymphoma. Conclusions: ASTX660 demonstrated a manageable safety profile, and exhibited evidence of pharmacodynamic and preliminary clinical activity at the 180-mg/d RP2D. The phase 2 part of the study is ongoing.

Dittmann, et al. “Next-generation hypomethylating agent SGI-110 primes acute myeloid leukemia cells to IAP antagonist by activating extrinsic and intrinsic apoptosis pathways”

Clink link to view article



Therapeutic efficacy of first-generation hypomethylating agents (HMAs) is limited in elderly acute myeloid leukemia (AML) patients. Therefore, combination strategies with targeted therapies are urgently needed. Here, we discover that priming with SGI-110 (guadecitabine), a next-generation HMA, sensitizes AML cells to ASTX660, a novel antagonist of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2) and X-linked IAP (XIAP). Importantly, SGI-110 and ASTX660 synergistically induced cell death in a panel of AML cell lines as well as in primary AML samples while largely sparing normal CD34+ human progenitor cells, underlining the translational relevance of this combination. Unbiased transcriptome analysis revealed that SGI-110 alone or in combination with ASTX660 upregulated the expression of key regulators of both extrinsic and intrinsic apoptosis signaling pathways such as TNFRSF10B (DR5), FAS, and BAX. Individual knockdown of the death receptors TNFR1, DR5, and FAS significantly reduced SGI-110/ASTX660-mediated cell death, whereas blocking antibodies for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) or FAS ligand (FASLG) failed to provide protection. Also, TNFα-blocking antibody Enbrel had little protective effect on SGI-110/ASTX660-induced cell death. Further, SGI-110 and ASTX660 acted in concert to promote cleavage of caspase-8 and BID, thereby providing a link between extrinsic and intrinsic apoptotic pathways. Consistently, sequential treatment with SGI-110 and ASTX660-triggered loss of mitochondrial membrane potential (MMP) and BAX activation which contributes to cell death, as BAX silencing significantly protected from SGI-110/ASTX660-mediated apoptosis. Together, these events culminated in the activation of caspases-3/-7, nuclear fragmentation, and cell death. In conclusion, SGI-110 and ASTX660 cooperatively induced apoptosis in AML cells by engaging extrinsic and intrinsic apoptosis pathways, highlighting the therapeutic potential of this combination for AML.