Combined inhibition of SHP2 and ERK enhances anti-tumor effects in preclinical models

View Poster:

Combined inhibition of SHP2 and ERK enhances anti-tumor effects in preclinical models

Summary

MAPK signalling is frequently dysregulated in cancer. The pathway can Panel composition and the number of responding cell lines Examples of dose-response curves Anti-tumor activity of SHP2i, ASTX029 and combination in MIA PaCa-2 xenograft be targeted by inhibition of different nodes and is tightly regulated by feedback mechanisms. Resistance to single-agent therapies frequently occurs through several different mechanisms including upregulation of receptor tyrosine kinases (RTKs), therefore, combination therapies are of interest.

The Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a key regulator of MAPK pathway downstream of RTKs and upstream of RAS, whilst ERK acts at the bottom of the pathway phosphorylating multiple substrates.

We investigated the potential of targeting the MAPK pathway through a combination of SHP2 and ERK inhibition in preclinical models. Using a SHP2 inhibitor (SHP2i) discovered by our structure-based drug discovery programme and ASTX029, an ERK inhibitor in a Phase I-II clinical trial (NCT03520075), we tested panels of cell lines representing various indications and genetic backgrounds in vitro and confirmed enhanced tumor growth inhibition by the combination in a xenograft model.

The clinical candidate, ASTX029, is a novel, dual mechanism ERK1/2 Inhibitor and has potent activity in MAPK-activated cancer cell lines and in vivo tumor models

View Poster:

The clinical candidate, ASTX029, is a novel, dual mechanism ERK1/2 Inhibitor and has potent activity in MAPK-activated cancer cell lines and in vivo tumor models

Summary

  • The MAPK signaling pathway is commonly upregulated in human cancers due to oncogenic mutations of upstream
    components such as BRAF or KRAS.
  • MAPK pathway inhibition has been clinically validated by BRAF and MEK inhibitors.
  • As the final node in the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers, including those resistant to upstream inhibition.
  • Previously we described the fragment-based discovery of a chemical series targeting ERK[1]. Here we disclose for the first time the structure of the clinical candidate, ASTX029.

References:

  1. Heightman et al., (2018). J Med Chem 61; 4978

2020 AACR: ASTX660, a non-peptidomimetic antagonist of cIAP1/2 and XIAP, promotes an anti-tumor immune response in pre-clinical models of T-cell lymphoma

View Poster:

ASTX660, a non-peptidomimetic antagonist of cIAP1/2 and XIAP, promotes an anti-tumor immune response in pre-clinical models of T-cell lymphoma

Summary

  • ASTX660 is a potent, non-peptidomimetic antagonist of the cellular and X-linked inhibitors of apoptosis proteins (cIAP1/2 and XIAP), which is currently being tested in a first in human phase I-II study in patients with advanced solid tumors and lymphomas (NCT02503423) where preliminary activity has been described in a group of T-cell lymphomas (1)
  • Herein, together with its well-characterized pro-apoptotic effect (2), we describe a new role for ASTX660 as an immunomodulatory molecule capable of promoting an anti-tumor immune response in pre-clinical models of T-cell lymphoma. These data add to the description of ASTX660’s mode of action and our ongoing understanding of the preliminary clinical efficacy that has been reported.

References:
1. Samaniego F, et al., Hematological Oncology. 2019;37(S2):527.
2.Ward GA et al., Mol Can Ther. 2018;17(7):1381-91

2020 EHA: Characterization of ASTX660, an antagonist of cIAP1/2 and XIAP, in mouse models of T cell lymphoma

View Poster:

Characterization of ASTX660, an antagonist of cIAP1/2 and XIAP, in mouse models of T cell lymphoma

Abstract:

Background:  ASTX660 is a potent, non-peptidomimetic antagonist of the cellular and X-linked inhibitors of apoptosis proteins (cIAP1/2 and XIAP), which is currently being tested in a first in human phase I-II study in patients with advanced solid tumor and lymphomas (NCT02503423). IAP antagonists have been reported to exhibit broad immuno-modulatory effects on both the innate and adaptive immune systems .

Aims:  We have investigated the profile of ASTX660 in preclinical T cell lymphoma models and evaluated ASTX660’s ability to enhance immune mediated killing of T cell lymphoma cells, both in vitro and in vivo.

Methods:  ASTX660 was tested in a panel of human and mouse tumor cell lines, assessing apoptosis, necroptosis and immunogenic cell death (ICD). ASTX660 was tested in vitro alone or with recombinant death receptor ligands (TNFa, FASL or TRAIL) and with or without caspase-8/RIPK inhibitors to demonstrate mechanism of action. Target engagement along with induction of apoptosis, necroptosis and ICD markers were analysed by Western blotting, and flow cytometry. Murine tumor models in immunocompetent and immunocompromised mice were utilised to evaluate the efficacy of ASTX660 in the presence or absence of an effective immune response. The Nanostring IO360 panel was used to assess immune cell recruitment.

Results:  ASTX660 antagonised IAPs in cell lines, as indicated by a decrease in cIAP1 protein levels and disruption of the XIAP:SMAC protein complex. In murine T cell lymphoma cell lines (BW5147, EL4 and L5178Y), ASTX660 treatment was associated with an increase in apoptosis or necroptosis and ICD biomarkers. In immunocompetent mice, administration of ASTX660 delivered a complete regression of BW5147 tumor growth, which was not seen in mice deficient in T and B cells. These mice remained refractory to subsequent rechallenge after initial complete regression. Biomarker evaluation from this model indicated a potent immunogenic/necroptotic response after ASTX660 dosing and upregulation of immune effector cells.

References:
1. Michie J. et al., The Immuno-Modulatory Effects of Inhibitor of Apoptosis Proteins Antagonists, Cells, 2020, 9(1), 207.
2. A. Hollebecque et al., AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2019.

 

2020 EHA: ASTX295, a novel small molecule MDM2 antagonist, demonstrates potent activity in AML in combination with decitabine

View Poster:
ASTX295, a novel small molecule MDM2 antagonist, demonstrates potent activity in AML in combination with decitabine

Abstract:

Background: The tumour suppressor p53 is activated in response to various stress signals to induce transcriptional changes leading to cellular responses such as cell cycle arrest and apoptosis. Activity of p53 is tightly regulated by the E3 ubiquitin ligase MDM2, which inhibits p53 function by, for example, targeting it for proteasomal degradation. Targeting the MDM2-p53 interaction to restore p53 function, is therefore, a promising strategy for cancer therapy and a number of these compounds are in clinical development including ASTX295 (NCT03975387). ASTX295 is a novel, orally bioavailable MDM2 antagonist developed through structure-based drug design that has demonstrated potent activity in a range of p53 wild-type pre-clinical models.

Aims: We investigated the therapeutic potential of ASTX295 alone and in combination with decitabine, a DNA- hypomethylating agent, in AML.

Methods: Primary blasts were isolated from AML patient samples using a combination of antibodies against CD34, CD33, CD45 and CD117. A panel of AML cell lines and primary AML blasts were treated with decitabine and ASTX295 at a range of concentrations, alone and in combination. After treatment, viability was assessed by Alamar blue assay or induction of apoptosis by flow cytometry using a fluorescent caspase substrate or Annexin V.

Effects of drug combinations were analysed using the Combenefit software based on different mathematical models (Loewe, bliss & HSA). Target engagement was confirmed by western blotting.

Results: When tested in a panel of p53 wild-type AML cell lines, ASTX295 exerted a strong anti-proliferative effect in which GI50 <30 nM was observed in 9 out of 11 cell lines. Additionally, p53 activation by ASTX295 triggered apoptosis in both AML cell lines, and primary AML blasts isolated from patients.

Activity of ASTX295 was further enhanced by combining with decitabine. Treatment of AML cell lines with ASTX295 and decitabine showed an increase in growth inhibitory effect and apoptosis compared to respective single agent treatments. This combinatory effect, as assessed by Combenefit, was also observed in primary AML blasts in which 7 of 12 samples tested demonstrated increased apoptosis at or above 300 nM ASTX295 and 100 nM decitabine. Target engagement of ASTX295 and decitabine was confirmed by upregulation of p53 transcriptional targets and decreased DNMT-1 expression.

Summary/Conclusion: Our findings demonstrate that the combination of ASTX295 with decitabine exhibits potent activity against p53 wild-type AML cells, and thus merits further investigation.

2020 EHA: Comparative results of azacitidine and decitabine from a large prospective Phase 3 study in treatment naïve acute myeloid leukemia (TN-AML) not eligible for intensive chemotherapy

View Presentation:

Comparative results of azacitidine and decitabine from a large prospective Phase 3 study in treatment naïve acute myeloid leukemia (TN-AML) not eligible for intensive chemotherapy

 

Abstract:

Background: Older patients with TN-AML who are ineligible for intensive chemotherapy have limited therapeutic options and poor outcomes. Hypomethylating agents (HMAs) azacitidine (AZA) and decitabine (DEC) have been the standard of care in this population for more than a decade and were approved in Europe for patients not candidates for intensive chemotherapy or patients not candidates for hematopoietic cell transplant. However, there is no direct efficacy and safety comparative data of AZA and DEC from a prospective large randomzied study. We took advantage of the largest randomized trial for patients with TN-AML who were not eligible for intensive chemotherapy, ASTRAL-1, to compare efficacy and safety of AZA vs DEC in patients randomized to these 2 treatments

Aims: To compare clinical outcomes between AZA and DEC in TN-AML patients not eligible for intensive chemotherapy

Methods: ASTRAL-1 is a global randomized Phase 3 trial which enrolled 815 patients with TN AML who were not eligible for intensive chemotherapy using stringent criteria including age ≥ 75 year or comorbidities including ECOG PS 3. Patients were randomized 1:1 to either Guadecitabine (G), a next generation HMA (60 mg/m2/d SC days 1-5) or a preselected Treatment Choice (TC) of AZA (75 mg/m2/d IV or SC days 1-7), DEC (20 mg/m2/d IV days 1-5), or low dose Ara-C (LDAC) (20 mg SC BID days 1-10). AML diagnosis and responses were assessed by an independent central pathologist blinded to randomization assignment. Responses were recorded using IWG 2003 criteria. Rates of Complete Response (CR) and Overall Survival (OS) were co-primary endpoints.

Results: 815 patients were randomized to G (408) or TC (407). Preselected TCs were DEC (43%), AZA (42%), or LDAC (15%). Of 407 patients randomized to TC, 338 (83%) were treated with either AZA (171 patients) or DEC (167 patients). Baseline variables were well balanced between AZA and DEC patients with no statistically significant differences in baseline characteristics: median age 76 y for both treatments, with poor PS 2-3 in 47.4% vs 53.9%, poor risk cytogenetics 38% vs 33.5%, secondary AML 38% vs 36.5%, BM blasts > 30% in 63.7% vs 71.3%, and TP53 mutations in 12.9% vs 11.3% for AZA vs DEC respectively. Median follow up was 25.5 months and median number of treatment cycles was 6 for AZA (range 1,31), and 5 for DEC (range 1,34). The ITT analyses showed a CR rate of 17.5% vs 19.2% (p= 0.70); and overall CR (CR+CRp+CRi) of 22.2% vs 25.1% (p= 0.53) for AZA vs DEC respectively. Median OS was 8.7 vs 8.2 months for AZA vs DEC respectively with Hazard Ratio of 0.97 (95% CI 0.77, 1.23; log rank p= 0.8). Additional subgroup analyses by baseline characteristics and molecular genetic mutations will be presented at the meeting. There was no statistically significant difference in the incidence of Grade ≥ 3 AEs (88.9% vs 87.4%), serious AEs (81.9% vs 76.0%), or 30-day all-cause mortality (11.7% vs 7.8%) for AZA vs DEC respectively. There was a trend of higher 60-day all-cause mortality on AZA (20.5%) vs DEC (13.2%) (p= 0.07).

Conclusions/Summary: This is the largest comparison of clinical outcomes associated with AZA and DEC for patients with TN AML not eligible for intensive chemotherapy who were treated in the same prospective study. While patients were randomized between G and each of AZA and DEC separately with no direct randomization of AZA vs DEC, the patients’ characteristics were well balanced in patients randomized to the two HMA treatments. There were no significant differences in CR, overall CR, OS, or safety between AZA and DEC.

Ramsey, et al., Oral Azacitidine and Cedazuridine Approximate Parenteral Azacitidine Efficacy in Murine Model

View further details:

Ramsey, H.E., Oganesian, A., Gorska, A.E. et al. Oral Azacitidine and Cedazuridine Approximate Parenteral Azacitidine Efficacy in Murine Model. Targ Oncol 15, 231–240 (2020). https://doi.org/10.1007/s11523-020-00709-x

Abstract:

Background: DNA methyltransferase inhibitors (DNMTis) improve survival for patients with myelodysplastic syndromes (MDS) and those with acute myeloid leukemia (AML) unable to receive standard cytotoxic chemotherapy and are, accordingly, the backbone of standard-of-care treatment for these conditions. Standard regimens with DNMTIs, decitabine (DEC) or azacitidine (AZA) include daily subcutaneous (s.c.) or intravenous (i.v.) administration for 5–7 consecutive days. Attempts to provide the therapy orally have been limited given rapid clearance of the agents by the enzyme cytidine deaminase (CDA), which is ubiquitous in the gut and liver as part of first-pass metabolism. Recently, cedazuridine (CDZ), an oral inhibitor of CDA, was successfully combined with DEC to approximate the pharmacokinetics of i.v. DEC in patients.

Objective: To determine if an oral dosing strategy might be feasible in the clinic with AZA, we attempted to increase the bioavailability of oral AZA through the use of CDZ, in a murine model.

Methods: Following pharmacokinetic and pharmacodynamic assessment of oral AZA dosed with CDZ in murine and monkey models, we tested this regimen in vivo with a human cell line-derived xenograft transplantation experiment (CDX). Following this we combined the regimen with venetoclax (VEN) to test the efficacy of an all-oral regimen in a patient-derived xenograft (PDX) model.

Results: Parenteral AZA and oral AZA + CDZ exhibited similar pharmacokinetic profiles, and efficacy against human AML cells. Tumor regression was seen with AZA + CDZ in MOLM-13 CDX and PDX models.

Conclusions: We conclude that oral AZA when combined with CDZ achieves successful tumor regression in both CDX and PDX models. Furthermore, the combination of AZA + CDZ with VEN in a PDX model emulated responses seen with VEN + AZA in the clinic, implying a potential all-oral VEN-based therapy opportunity in myeloid diseases.

Garcia-Manero et al., Oral cedazuridine/decitabine: a phase 2, pharmacokinetic/pharmacodynamic, randomized, crossover study in MDS and CMML

View further details:

Garcia-Manero et al, “Oral cedazuridine/decitabine: a phase 2, pharmacokinetic/pharmacodynamic, randomized, crossover study in MDS and CMML”. Blood. 2020 Apr 13. pii: blood.2019004143. doi: 10.1182/blood.2019004143. [Epub ahead of print]

Abstract:

This phase 2 study was designed to compare systemic decitabine exposure, demethylation activity, and safety in the first 2 cycles with
cedazuridine 100 mg/decitabine 35 mg vs standard decitabine 20 mg/m2 IV. Adults with International Prognostic Scoring System intermediate-
1/2- or high-risk myelodysplastic syndromes (MDS), or chronic myelomonocytic leukemia (CMML) were randomized 1:1 to receive oral
cedazuridine/decitabine or IV decitabine in cycle 1, followed by crossover to the other treatment in cycle 2. All patients received oral
cedazuridine/decitabine in subsequent cycles. Cedazuridine and decitabine were given initially as separate capsules in a dose-confirmation stage
and then as a single fixed-dose combination (FDC) tablet. Primary endpoints: mean decitabine systemic exposure (geometric least-squares
mean [LSM]) of oral/IV 5-day area under curve from time 0 to last measurable concentration (AUClast), % long interspersed nuclear element 1
(LINE-1) DNA demethylation for oral cedazuridine/decitabine vs IV decitabine, and clinical response. Eighty patients were randomized and
treated. Oral/IV ratios of geometric LSM 5-day AUClast (80% confidence interval) were 93.5% (82.1%, 106.5%) and 97.6% (80.5%, 118.3%)
for the dose-confirmation and FDC stages, respectively. Differences in mean %LINE-1 demethylation between oral and IV were ≤1%. Clinical
responses were observed in 48 patients (60%), including 17 (21%) with complete response. The most common grade ≥3 adverse events
regardless of causality were neutropenia (46%), thrombocytopenia (38%), and febrile neutropenia (29%). Oral cedazuridine/decitabine (100/35
mg) produced similar systemic decitabine exposure, DNA demethylation, and safety vs decitabine 20 mg/m2 IV in the first 2 cycles, with similar
efficacy. ClinicalTrials.gov NCT02103478.

Ye, et al. “ASTX660, an antagonist of cIAP1/2 and XIAP, increases antigen processing machinery and can enhance radiation-induced immunogenic cell death in preclinical models of head and neck cancer”

Click link to view article

https://www.tandfonline.com/doi/full/10.1080/2162402X.2019.1710398

Abstract:

Inhibitor of apoptosis protein (IAP) antagonists have shown activity in preclinical models of head and neck squamous cell carcinoma (HNSCC), and work across several cancer types has demonstrated diverse immune stimulatory effects including enhancement of T cell, NK cell, and dendritic cell function. However, tumor-cell-intrinsic mechanisms for this immune upregulation have been largely unexplored. In this study, we show that ASTX660, an antagonist of cIAP1/2 and XIAP, induces expression of immunogenic cell death (ICD) markers in sensitive HNSCC cell lines in vitro. Experiments in syngeneic mouse models of HNSCC showed that ASTX660 can also enhance radiation-induced ICD in vivo. On a functional level, ASTX660 also enhanced killing of multiple murine cell lines by cytotoxic tumor-infiltrating lymphocytes, and when combined with XRT, stimulated clonal expansion of antigen-specific T lymphocytes and expression of MHC class I on the surface of tumor cells. Flow cytometry experiments in several human HNSCC cell lines showed that MHC class I (HLA-A,B,C) was reliably upregulated in response to ASTX660 + TNFα, while increases in other antigen processing machinery (APM) components were variable among different cell lines. These findings suggest that ASTX660 may enhance anti-tumor immunity both by promoting ICD and by enhancing antigen processing and presentation.

 

Kidger et al., “Dual-mechanism ERK1/2 inhibitors exploit a distinct binding mode to block phosphorylation and nuclear accumulation of ERK1/2”; Mol Cancer Ther, 2020

Kidger et al., “Dual-mechanism ERK1/2 inhibitors exploit a distinct binding mode to block phosphorylation and nuclear accumulation of ERK1/2”; Mol Cancer Ther, 2020

https://doi.org/10.1158/1535-7163.mct-19-0505